import { noop } from 'motion-utils'; /* Bezier function generator This has been modified from Gaƫtan Renaudeau's BezierEasing https://github.com/gre/bezier-easing/blob/master/src/index.js https://github.com/gre/bezier-easing/blob/master/LICENSE I've removed the newtonRaphsonIterate algo because in benchmarking it wasn't noticiably faster than binarySubdivision, indeed removing it usually improved times, depending on the curve. I also removed the lookup table, as for the added bundle size and loop we're only cutting ~4 or so subdivision iterations. I bumped the max iterations up to 12 to compensate and this still tended to be faster for no perceivable loss in accuracy. Usage const easeOut = cubicBezier(.17,.67,.83,.67); const x = easeOut(0.5); // returns 0.627... */ // Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2. const calcBezier = (t, a1, a2) => (((1.0 - 3.0 * a2 + 3.0 * a1) * t + (3.0 * a2 - 6.0 * a1)) * t + 3.0 * a1) * t; const subdivisionPrecision = 0.0000001; const subdivisionMaxIterations = 12; function binarySubdivide(x, lowerBound, upperBound, mX1, mX2) { let currentX; let currentT; let i = 0; do { currentT = lowerBound + (upperBound - lowerBound) / 2.0; currentX = calcBezier(currentT, mX1, mX2) - x; if (currentX > 0.0) { upperBound = currentT; } else { lowerBound = currentT; } } while (Math.abs(currentX) > subdivisionPrecision && ++i < subdivisionMaxIterations); return currentT; } function cubicBezier(mX1, mY1, mX2, mY2) { // If this is a linear gradient, return linear easing if (mX1 === mY1 && mX2 === mY2) return noop; const getTForX = (aX) => binarySubdivide(aX, 0, 1, mX1, mX2); // If animation is at start/end, return t without easing return (t) => t === 0 || t === 1 ? t : calcBezier(getTForX(t), mY1, mY2); } export { cubicBezier };